Combined Pretreatment with White-rot Fungus and Alkali at near Room-temperature for Improving Saccharification of Corn Stalks

نویسندگان

  • Weixin Zhong
  • Hongbo Yu
  • Lili Song
  • Xiaoyu Zhang
چکیده

Although biological pretreatment has the advantages of being environmentally friendly and having low-energy consumption, it usually requires a relatively long incubation time. In this study, a novel combined pretreatment with white-rot fungus and alkali at near room-temperature for saccharification of corn stalks was investigated to speed up the biological process. Biological pretreatment with Irpex lacteus or Echinodontium taxodii can improve enzymatic hydrolysis of corn stalk greatly, but the process requires a long time (60 days) to achieve a satisfactory sugar yield. The combination processes with the fungi were compared with the sole pretreatments. The results showed that the time of the biological process could be shortened to 15 days when the biotreatment with I. lacteus was combined with alkali pretreatment. The efficiency of alkali pretreatment can be also enhanced significantly by biological treatment. 271.1mg/g of final glucose yield was obtained for the combination pretreatment, which was an improvement of 50.4% and 28.3% in comparison with the sole alkali pretreatment at the same and optimum reaction time, respectively. In conclusion, the combination of biological pretreatment with alkali processes not only speeded up the biological process, but also improved the sugar yield in comparison to the sole pretreatment and is favorable for the development of biological pretreatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment

Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly low...

متن کامل

Fungal Pretreatment of Corn Stover Fractions for Ethanol Production

Ethanol produced from biomass, such as corn grain or sugar cane, is a renewable fuel that helps lessen dependence on petroleum-based fossil fuels. Currently, the majority of ethanol production in the United States utilizes corn grain, which supplied about 14 billion gallons of ethanol to the market in 2012. In the near future, corn supplies for ethanol are expected to be limited due to concerns...

متن کامل

Biological Pretreatment under Non-sterile Conditions for Enzymatic Hydrolysis of Corn Stover

Pretreatment with white-rot fungi can effectively remove lignin and decompose the structure of biomass to enhance subsequent enzymatic hydrolysis. This study developed a novel fungal pretreatment of biomass, which was operated under non-sterile conditions. The white-rot fungus Irpex lacteus colonized stably on the non-sterile substrates and effectively degraded lignin. After non-sterile fungal ...

متن کامل

Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation.

This research aims at developing a biorefinery platform to convert lignocellulosic corn fiber into fermentable sugars at a moderate temperature (37 °C) with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum), and soft-rot (Trichoderma reesei) fungi were used for in situ enzyme production to hydrolyze cellulosic and hemicellulosic components of co...

متن کامل

Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011